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Discrete Darboux transformation for discrete polynomials
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Gaspard Bangerezako†‡
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Abstract. The Darboux transformation, well known in second-order differential operator
theory, is applied to the difference equations satisfied by the discrete hypergeometric polynomials
(Charlier, Meixner-Kravchuk, Hahn).

1. Introduction

Since Darboux, who showed howz(x) = Ay(x) + By ′(x) solvesz′′(x) = (ξ(x) + h)z(x)
when y(x) satisfiesy ′′(x) = (η(x) + h)y(x) [3], numerous generalizations have been
investigated.

Consider first the second-order difference equation

H(x; j)�(x; j) = 0 (1)

where

H(x; j) = E2+ v(x; j)E + u(x; j) (2)

with

Ei�(x; j) = �(x + i; j) (3)

x ∈ R, i, j ∈ Z.
Suppose that one can form the products

H(x; j)− µ(j) = (E + g(x; j))(E + f (x; j))
H(x; j + 1)− µ(j) = (E + f (x; j))(E + g(x; j))+ α(j) (4)

then, the operatorH(x; j + 1) is called adiscrete Darboux transformationof H(x; j).
E+ g(x; j) andE+ f (x; j) are said to play the role of ‘lowering’ and ‘raising’ operators
respectively. From (4), we have the following commutation relation

H(x; j + 1)(E + f (x; j)) = (E + f (x; j))(H(x; j)+ α(j)) (5)

which is a discrete analogue of the so-calleddressing chain[12, 14]. The dressing chain
(5) is equivalent to the system

f (x; j)+ g(x + 1; j) = f (x + 1; j + 1)+ g(x; j + 1)

f (x; j)g(x; j)+ α(j) = f (x; j + 1)g(x; j + 1)+ µ(j + 1)− µ(j). (6)
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In the continuous case, many questions concerning the intrinsic structure (Hamiltonian,
integrability, etc) of such chains are explained in [12, 11]. In the discrete case, similar
structures remain generally obscure. Even some particular considerations of such systems
appearing today are mainly directed to the cases in which the shift operator in (3) acts onj

but not onx. This is typically the case when one is treating the discrete Schrödinger problem
or particularly the polynomial recurrence relations. Note that except for some particular
cases of self-adjointness ofx and j , this nuance is very significant. The polynomial
recurrence relations case for example, is characterized by the linearity of the eigenvalue,
which is thenx, which a priori facilitates the application of the Darboux transformation
techniques.

In this work, our discussions will be confined to a restricted case of the discrete Darboux
transformation (4). Namely, it will be presumed thatj acts not simply as a symbol (index)
as in [12, 11], but as an independent variable. In that situation, one says that the operator
H is factorizableaccording to the Infeld–Hull method [9, 4]. For convenience, we will call
j the variable of factorization.

Let us note that when dealing with the second-order hypergeometric difference operator
on a linear lattice [10], one can adapt the Infeld–Hull factorization so that the latter one
becomes equivalent to the Nikiforov–Suslov–Uvarov theory [10] as was shown in [13].
As noted in [13], the cited equivalence remains valid when one passes from a linear to
nonlinear lattice. In the latter case, the role of the ‘lowering’ operator is played by the
Askey–Wilson derivative [1, 6, 10]. A similar factorization was used (implicitly) in [5]
to give a very simplified version of the proof of the orthogonality relation for the Askey–
Wilson polynomials [1]. Next, in [15], it was proven that, starting from the recurrence
relations for the Tchebyshev polynomials, one can obtain, using the factorization procedure,
the corresponding relations for some special cases of the Askey–Wilson polynomials. It
follows from this observation that [17] those special cases of Askey–Wilson polynomials
are (not only discrete classical) continuous semiclassical polynomials [8].

Here, as in [13], we are dealing with the factorization of the second-order difference
operator on a linear lattice,

σ(x)1∇ + τ(x)1− λ (7)

where1 = E−1,∇ = 1−E−1 (see (3) for the definition ofEi), σ andτ being polynomials
of degree6 2 and 1 respectively,λ being a constant (inx). However, the particularity of
this work resides in that the ‘variable of factorization’ (asj in (4)) is exactly the degree
n of the corresponding polynomials. So that during the procedure of transformation, only
the termλ is altered. We will see that this phenomenon is characteristic of the discrete
hypergeometric polynomials on a linear lattice. In the next section, we shall give and
discuss the announced factorization of the operator (7). In the last section, we shall apply
the result of the factorization to the classical orthogonal polynomials of a discrete variable
on a linear lattice (Charlier, Meixner-Kravchuk, Hahn). Similar factorizations having been
obtained (differently) for the Charlier and Meixner-Kravchuk cases in [9], we first succeed
to handle the Hahn case, specialized by the nonlinearity of the eigenvalue, as a function
of j .

2. Finite difference analogues ofλ(n)-eigenfunctions of hypergeometric type

Let 8(x; n), x ∈ R, n ∈ Z, be a given system of hypergeometric functions such that

(σ (x)1∇ + τ(x)1)8(x; n) = λ(n)8(x; n) (8)
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whereσ(x) andτ(x) are polynomials of degree less than or equal to 2 and 1 respectively,
λ(n) = nτ ′ + 1

2n(n− 1)σ ′′.
For convenience, we shall call themλ(n)-eigenfunctions. It is clear that this set includes

the discrete polynomials of hypergeometric type[10]. Let us note that in this case the number
n is the degree of the corresponding polynomials.

One can easily find some functionρ(x) such that (8) is equivalent to

(E2− [2σ(x + 1)+ τ(x + 1)+ λ(n)]E + (σ (x)+ τ(x))σ (x + 1))(ρ(x)8(x; n)) = 0 (9)

with

ρ(x + 1)

ρ(x)
= σ(x)+ τ(x).

Let L = E2− [2σ(x + 1)+ τ(x + 1)]E + (σ (x)+ τ(x))σ (x + 1) and

H(x; n) = L− λ(n)E = E2− [2σ(x + 1)+ τ(x + 1)+ λ(n)]E
+(σ (x)+ τ(x))σ (x + 1).

Supposing the existence of two polynomialsf (x; n) and g(x; n) of second degree with
identical leading coefficients such that

H(x; n)− µ(n) = (E + g(x; n))(E + f (x; n)) (10)

for some constantµ(n), one can verify that

(E + f (x; n))(E + g(x; n)) = H(x; n′)− µ(n) (11)

where

λ(n′) = λ(n)+1(f (x; n)− g(x; n)) (12)

n′ being some function ofn, which will be determined later.
Equations (10) and (11) give

H(x; n′)(E + f (x; n)) = (E + f (x; n))H(x; n). (13)

In order to determinef (x; n) andg(x, n), one needs to note that equation (10) leads to
the system

f (x + 1; n)+ g(x; n) = −2σ(x + 1)− τ(x + 1)− λ(n)
f (x; n)g(x; n) = (σ (x)+ τ(x))σ (x + 1)− µ(n) (14)

which is in fact a discrete Riccati equation.
Setting

f (x; n) = −σ(x)− τ(x)− 1
2λ(n)+ ϕ(x; n)

g(x; n) = −σ(x + 1)− 1
2λ(n)− ϕ(x + 1; n) (15)

the first equation in (14) will automatically be verified. The second reads

1
2λ(n)(σ (x + 1)+ σ(x)+ τ(x))+ 1

4λ
2(n)+ µ(n)

+(σ (x)+ τ(x))ϕ(x + 1; n)− σ(x + 1)ϕ(x; n)
+ 1

2λ(n)1ϕ(x; n)− ϕ(x; n)ϕ(x + 1; n) = 0 (16)

a discrete Riccati equation related toϕ(x; n). Looking for polynomial solutions of degree
6 1, ϕ(x; n) = φ(n)x + ψ(n); knowing thatσ(x) = σ0x

2 + σ1x + σ2, τ(x) = τ0x + τ1
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and equating coefficients on the left-hand side of (16) to zero, one finds two possible sets
of solutions

φ1(n) = τ0+ (n− 1)σ0 φ2(n) = −nσ0 (17)

ψ1,2(n) =
φ1,2(n)(τ1+ τ0− σ0− φ1,2(n))+ λ(n)σ0+ λ(n)σ1+ 1

2λ(n)τ0

2φ1,2(n)+ 2σ0− τ0
(18)

µ1,2(n) = ψ1,2(n)(ψ1,2(n)+ φ1,2(n)+ σ1+ σ0− τ1)− 1
2λ(n)(σ0+ σ1+ 2σ2+ τ1)

−φ1,2(n)(σ2+ τ1+ 1
2λ(n))− 1

4λ
2(n). (19)

On the other side, (15) reads

f (x; n) = −σ0x
2+ (φ(n)− σ1− τ0)x + ψ(n)− σ2− τ1− 1

2λ(n) (20)

g(x; n) = −σ0x
2− (φ(n)+ 2σ0+ σ1)x − σ0− σ1− σ2− 1

2λ(n)− φ(n)− ψ(n). (21)

Thus, the conditions advanced in (10) are all satisfied.
Next, from (20) and (21), we obtain1(f − g) = 2φ(n)+ 2σ0 − τ0, and using (17), it

follows (λ(n) = nτ0+ n(n− 1)σ0),

(1(f − g))1 = 2φ1(n)+ 2σ0− τ0 = τ0+ 2nσ0 = λ(n+ 1)− λ(n) (22)

(1(f − g))2 = 2φ2(n)+ 2σ0− τ0 = −(τ0+ 2(n− 1)σ0) = λ(n− 1)− λ(n). (23)

Referring to (12), this means that we have proved thatn′1,2 = n± 1 and (13) reads

H(x; n± 1)(E + f1,2(x; n)) = (E + f1,2(x; n))H(x; n) (24)

which is the searched commutation relation (5) (j := n).
From (24) and (9), it obviously follows that for anyλ(n)-eigenfunction8(x; n) of

hypergeometric type, the following difference relations are valid

c1(n)8̃(x; n+ 1) = (E + f1(x; n))8̃(x; n) (25)

c2(n)8̃(x; n− 1) = (E + f2(x; n))8̃(x; n) (26)

where8̃(x; n) = ρ(x)8(x; n),
f1,2(x; n) = −σ0x

2+ (φ1,2(n)− σ1− τ0)x + ψ1,2(n)− σ2− τ1− 1
2λ(n).

From this, of course, the recurrence relations, for8(x; n), can be deduced. Moreover we
see that the ‘raising’ operator in (25) leads to the Rodrigues-type formula. One now needs
to remark from (16) and (22) that, conversely, the possibility of such a factorization on a
type (7) operator implies necessarily thatλz(n) = 1

2σ
′′n2 + ((τ ′ − 1

2σ
′′)2 + 2σ ′′z)

1
2n + z.

Whence, operator (7) is factorizable (withj := n) iff the corresponding polynomials are the
discrete hypergeometric polynomials on a linear lattice (Charlier, Meixner-Kravchuk and
Hahn cases corresponding toz = 0) or their trivial generalizations. It can be checked [2]
that this characteristic property can be extended not only to all classical (Askey–Wilson)
polynomials but also to the discrete semiclassical ones [6, 7], so to include related properties
obtained in [16].

3. Examples

Consider now the equation,

L̃(x; n)Y (x; n) = 0 (27)
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Table 1. Data for the Charlier case.

H(x; n) E2 − (x + µ+ λ(n)+ 1)E + µ(x + 1)
ρ(x) µx

f1(x; n) −x + n
f2(x; n) −µ
g1(x; n) −µ
g2(x; n) −x + n− 1
µ1(n) µn+ µ
µ2(n) µn

Table 2. Data for the Meixner case.

H(x; n) E2 − [(µ+ 1)x + µ(γ + 1)+ 1+ λ(n)]E + µx2 + µ(γ + 1)x + γµ
ρ(x) µx0(x + γ )
f1(x; n) −x + n
f2(x; n) −µ(x + γ + n)
g1(x; n) −µ(x + γ + n+ 1)
g2(x; n) −x + n− 1
µ1(n) µ(nγ + n2 + n+ γ )
µ2(n) µn(γ + n− 1)

Table 3. Data for the Hahn case.

H(x; n) E2 + [2x2 + (6+ β − α − 2N)x + (5+ 2β − α − 3N − βN
−λ(n))]E + [x4 + (4+ β − α − 2N)x3 + (6+ 3β − 3α − 6N

+N2 − 2Nβ + αN − αβ)x2 + (4+ 3β − 3α − 6N + 2N2

−4Nβ + 2Nα − 2αβ +N2β +Nαβ)x + 1+ β − α − 2N

+N2 − 2Nβ + αN − αβ +N2β +Nαβ
ρ(x)

0(x+β+1)
0(−x+N)

f1(x; n) x2 − (N + α + n− 1)x − (β + 1)(N − 1)− 1
2λ(n)+ ψ1(n)

g1(x; n) x2 + (3+ n+ β −N)x + 2+ β + n−N − 1
2λ(n)− ψ1(n)

µ1(n) ψ1(n)(ψ1(n)− 1− βN − n)− 1
2λ(n)(β + 1)(N − 1)

− 1
2λ(n)(N + α − 1)+ (n+ α + β + 1)(β + 1)(N − 1)

+ 1
4λ(n)(n+ 2)(n+ α + β + 1)

f2(x; n) x2 + (2+ β −N + n)x − (β + 1)(N − 1)− 1
2λ(n)+ ψ2(n)

g2(x; n) x2 + (2− n−N − α)x −N − α − n+ 1− 1
2λ(n)− ψ2(n)

µ2(n) ψ2(n)(ψ2(n)+ n+ α − βN + β)− 1
2λ(n)(N + α − 1)

−n(β + 1)(N − 1)− 1
2λ(n)(β + 1)(N − 1)− 1

2λ(n)n− 1
4λ

2(n)

ψ1(n)
(n+α+β+1)(β+1)(N−1)−λ(n)(N+α)+ 1

2λ(n)(α+β+2)
2+2n+α+β

ψ2(n)
n(β+1)(N−1)+λ(n)(N+α)− 1

2λ(n)(α+β+2)
2n+α+β

whereL̃ is the operator given in (7). Here, we define the discrete classical polynomials on
a linear lattice as the non-trivial polynomial solutions of (27). From (25), it is clear that if
P(x; n) is such a solution, then

P(x; n) = c(n)

ρ(x)

n−1∏
i=0

(E + f (x; i))ρ(x) (28)



2196 G Bangerezako

c(n) being some constant (inx). Next, we can indentify them according to the corresponding
choices of σ and τ [10]. The Charlier polynomials correspond toσ(x) = x and
τ(x) = µ − x. For the Meixner and Hahn polynomials we have respectivelyσ(x) = x;
τ(x) = γµ−x(1−µ) andσ(x) = x(N+α−x); τ(x) = (β+1)(N−1)−(α+β+2)x. In [10]
one can find explicit formulae for their coefficients (from corresponding ‘hypergeometric
series’) but we are not concerned with those here.

Direct substitutions in the expressions obtained in section 2 lead to the necessary data
for the factorization of the Charlier (table 1), Meixner (table 2) and Hahn (table 3) cases.

It is clear that the same technique can also be applied to theq-versions of the preceding
polynomials. Extension to other difference operators is in progress [2].
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